Skip to main content

WebRTC : Beyond Peer to peer

Why do we need any middleman if i can directly communicate to second computer. That's how Peer to peer communication works. You just need initial signaling to be done with the help of server.

Create an offer from computer initiating communication, pass it to server which in turn check same with peer computer. Once peer acknowledge incoming request, it will share its SDP details.
Once acknowledgement received with peer connection information, computer will be able to directly communicate with peer.





Now in this post, I wish to talk about how WebRTC will be leveraged to implement multiparty video conferencing.

Mesh:

In this architecture every participant have a connection to each other. So for n participant will have n-1 connection. So total n*(n-1)/2 connections. This is easy to implement as it does not need much changes from existing P2P connection. All the stream handling is done at edge computer. It has drawback of high data consumption and scalability issues. 




Routing:

In this architecture all participant will be sending their stream to central server which in turn will be sending to other participants. It is scalable and but could be costly. 



Mixing:  

In this architecture all participant will be sending their stream to central server which in turn consolidate them in single stream and will be sending single stream to all participants. 
It is scalable but costly as server has to do a lot of stream processing. . 

Comments

Popular posts from this blog

[PUZZLE] ELEPHANT AND BANANA PUZZLE

A merchant has bough some 3000 banana from market and want to bring them to his home which is 1000 km far from Market. He have a elephant which can carry maximum of 1000/- banana at time. That could have been easy but this elephant is very shrewd and he charges 1 banana for every one kilometer he travel. Now we have to maximise number of banana which should reach to home. Solution: At present we are at 0th km with 3000 banana and elephant. Lets see if elephant have to shift all the 3000 banana and elephant by 1 km. For 1 km shift: Take first 1000 banana and drop at 1st km. 2 banana consumed. One banana each for to and fro. Second  1000 banana and drop at 1st km. 2 banana consumed. Third 1000 banana and reach at 1st km. 1 banana consumed. So all in all total 5 banana will be consumed if we shift a kilometer. But that's not all, our total banana number are also reducing so we may have to reduce the number of turns too. And this will happen once we have reduced the b

[JAVA] Evil Null

Elvis operator could have been a good use here. But unfortunately have been decline till now. Its used to say "?." Operate only if not null. Class A {  public B getB() {    return new B(); } } public void test( A a) {     if ( a != null  )         return a.getB();  } Above method would be replaced with public void test ( A a) {      return a?.getB();  } Unfortunately its still some time we can see some think like that. So till that we have to live with two choices: 1. Check for null. 2. Use the Null Object Pattern. So we all know that how to check for null objects and believe me i had real long chain of checking null. Second way can be useful but if this chain is pretty long its can be tiresome to have null object for all the hierarchy Null Object means there will be definition of class A (mostly derived from same interface.) and will have dummy methods which will nullify any call to these methods.

Two numbers with minimum difference

Find the two numbers whose difference is minimum among the set of numbers. For example the sequence is 5, 13, 7, 0, 10, 20, 1, 15, 4, 19 The algorithm should return min diff = 20-19 = 1. Make an efficient algorithm, yeah best could be O(n). Not sure if i could use DP here, will post a solution tommorow. Let me know if you find a answer. Algorithm:MiniMumDiffN Get the size of array , say n. Get the range of array, range. Bucket Sort the above array. Search the above sorted array for minimum difference. This will be the minimum difference numbers. Now question comes where the range of above given array is very big. Algorithm:DivideArray Take an random element. Search for its position in array. Return the index of element. Algorithm:MiniMumDiff if array_range > MAXRANGE int mid = divideArray (arr,start,end); d1,max1 = MiniMumDiff( arr,start,mid-1); d2,max2 = MiniMumDIff(arr,mid+1,end); d3 = difference max1 and arr[mid] d4 = difference max2 and arr[mid] return minimum( d1,d2