Skip to main content

WebRTC : Beyond Peer to peer

Why do we need any middleman if i can directly communicate to second computer. That's how Peer to peer communication works. You just need initial signaling to be done with the help of server.

Create an offer from computer initiating communication, pass it to server which in turn check same with peer computer. Once peer acknowledge incoming request, it will share its SDP details.
Once acknowledgement received with peer connection information, computer will be able to directly communicate with peer.





Now in this post, I wish to talk about how WebRTC will be leveraged to implement multiparty video conferencing.

Mesh:

In this architecture every participant have a connection to each other. So for n participant will have n-1 connection. So total n*(n-1)/2 connections. This is easy to implement as it does not need much changes from existing P2P connection. All the stream handling is done at edge computer. It has drawback of high data consumption and scalability issues. 




Routing:

In this architecture all participant will be sending their stream to central server which in turn will be sending to other participants. It is scalable and but could be costly. 



Mixing:  

In this architecture all participant will be sending their stream to central server which in turn consolidate them in single stream and will be sending single stream to all participants. 
It is scalable but costly as server has to do a lot of stream processing. . 

Comments

Popular posts from this blog

Car Parking Problem

There is n parking slots and n-1 car already parked. Lets say car parked with initial arrangement and we want to make the car to be parked to some other arrangement. Lets say n = 5, inital = free, 3, 4, 1, 2 desired = 1, free, 2, 4 ,3 Give an algorithm with minimum steps needed to get desired arrangement. Told by one of my friend and after a lot of search i really got a nice solution. I will post solution in comment part

DEShaw Interview Questions

ther are N numbers frm 1 to N and starting from index 1 we will keep deleting every alternate going in cyclic order with array. Only one element will be left at the end. Tell us the index of element in array we started. e.g. there are 5 nums 1 2 3 4 5 then after 1st iteration 1 3 5 will be remained. .. then 1 will be next to be elliminated and then 5 3 will remain alone... give sum efficient algorithm to calculate which numer will remain at the end Answer: 2*(n-2^p)+1 where p=floor(log2 n)

[Tree]..Is parent or grandparent?

There are two nodes given in a tree(not binary tree). Find whether one node is parent/grand parent of other. order should be O(1). tag root as 0 , tag left child as 00 , right child as 01. left child's left child as 000 , left's child's right child as 001 ... and so on. now let input be tags t1 and t2 if( (t1 == (t2>>1)) || (t2==(t1>>1))) return child parent relationship if( (t1 == (t2>>2)) || (t2==(t1>>2))) return child grand-parent relationship ... This solution can take a lot of space as the three grows. We can tag the node by number .. Root -0 1 -2-3-4 SO given two node get their tags.. Get Max of both t1, t2. Go for parent of that node if other node then return or check for parent of parent and check again for other node. With 2^32 value avaialable for indexing ..u wont run out of values.